

Numeracy Term 1

Number:

- Count forwards in 1's from different starting points within 20.
- Count backwards in 1's from different starting points within 20.
- Count forwards in 2's from 0 to 20
- Count backwards in 2's from 20 to 0

Understanding Number And Number Notation.

- Recognise spoken numerals within 20.
- Read numerals within 20.
- Write numerals within 20.
- Find missing number is a sequence of consecutive numbers, within 20.
- Order a set of consecutive numbers within 20 (increasing and decreasing)
- Touch count sets of objects within 20.
- Make a variety of sets for a given number within 20.
- Match numerals to sets within 20.
- Order sets of up to 20 objects.

Addition

- Partition sets into subsets, within 20
- Combine two sets to find a total, within 20.
- Combine more than two sets to find a total, within 20.
- Add two numbers. practically, answers within 20

Mental Addition

- Mentally add 1 to any number, answers within 20.
- Mentally add 2 to any number, answers within 20.
- Mentally add 0 to any number, answers within 20.

Subtraction

- Practically subtract an amount from a set, within 10, as "take away"
- Subtract practically within 10.

Money

- Recognise 1p, 2p, 5p, 10p, 20p coins.
- Use 1p coins in shopping activities buy 2 items at a time (total within 20).

Numeracy Term 1

Shape & Space:

• Use one criterion sorting diagrams (e.g. Tree, Venn, Carroll) to sort and group 2D shapes, 3D shapes and mixed sets of 2D and 3D shapes according to their properties.

Position and Direction.

• Use everyday language to describe position, direction and movement (e.g. under, beside, towards, away from, quickly, slowly etc).

Measure:

Length

• Use more refined mathematical language when comparing objects for length: e.g. a little bit longer (shorter) than, a lot longer (shorter) than.

<u>Weight</u>

• Use more refined mathematical language when comparing objects for weight: e.g. a little bit heavier (lighter) than, a lot heavier (lighter) than.

Capacity

• Use more refined mathematical language when comparing containers for capacity: e.g. holds a little bit more (less) than, holds a lot more (less) than.

<u>Area</u>

• Use more refined mathematical language when comparing surfaces for area: e.g. a little bit larger (smaller) area than, a lot larger (smaller) area than.

<u>Time</u>

- Develop an understanding of the passing of time through practical activities.
- Use simple timers (non-standard units) where the time is fixed and the output is measured, and where the task is fixed and the time is measured.

Handling Data:

Tree and Venn Diagram

• Use given one criterion Tree and Venn Diagrams to sort for negation, explaining completed diagram (e.g. stating how many toy animals *did not* have horns).

Pictograms

- Contribute towards simple class pictographs (e.g. by placing own picture to indicate how they come to school), explaining why they placed their picture in a particular place.
- Interpret completed pictograph.